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Abstract
Contractions of Jordan algebras and Jordan superalgebras which preserve a
chosen grading are defined and studied. Simultaneous grading of Jordan
algebras and their representation spaces is used to develop a theory of grading,
preserving contractions of representations of Jordan algebras.

PACS numbers: 02.10.De, 02.20.Bb

1. Introduction

The purpose of this paper is to introduce graded contractions of Jordan algebras and their
representations the same way as was done for Lie algebras and their representations [1, 2].
The possibility of doing that stems from the possibility of simultaneously grading the algebras
and their representation spaces by automorphisms of finite order.

Jordan algebras emerged in physics [3] in order to axiomatize the algebraic relations of
quantum-mechanical observables. During the 20th century the theory was further developed
mainly by mathematicians. Expectations that Jordan theory could provide the algebraic
foundations of quantum theory did not fully materialize: the only Jordan structures totally
unrelated to associative structures are finite dimensional. Nevertheless, operator algebras are
often used in quantum (statistical) mechanics [7]. In [5], Jordan algebras were applied to
complex analysis to give an algebraic description of the bounded or unbounded domains of
holomorphy in C

n arising in the theory of automorphic functions. Recently, quite unexpected
connections were found between Jordan algebras (Jordan triple systems) and KdV equations
[4]. It seems that representations of Jordan algebras are connected in this case with the
linear spectral problem. Interesting applications of Jordan algebras are also in [8, 9]. Further
exposition, addressed particularly to the physicist, can be found in [6]. For the Jordan
superalgebra see [17].
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As for Lie algebras, graded contractions of Jordan algebras are degenerations which
preserve a fixed grading of the algebra. Such a grading is obtained as a decomposition of
the algebra into the direct sum of eigenspaces of a chosen automorphism of the algebra. The
same automorphism also acts on any representation space. Their simultaneous grading thus
amounts to the decomposition of the algebra and of its representations into eigenspaces of the
same automorphism.

In the traditional approach, the contraction of an algebra is the continuous limit of a
parametrized family of isomorphic algebras. There is a considerable body of literature on this
subject [11, 12], as well as on the more general notion of the deformation of an algebra [13]. It
also harbours the main obstacles to a satisfactory theory: First, in its full generality the study of
all continuous deformations of the structure constants of an algebra offers such a bewildering
array of possibilities that one cannot hope to obtain precise and practical information except
in the simplest cases. Second, to be widely useful, deformations of algebras need to be
accompanied by deformations of their representations. The traditional theory offers little
guidance in that respect.

The process of graded contraction is functorial and depends on the grading group G
rather than on details of the structure of the algebra itself. Moreover, for any fixed grading
semigroup the problem is solved simultaneously for Jordan algebras and Jordan superalgebras.
By considering, along with the graded algebras, their compatibly graded representations, we
also obtain a theory of contractions of representations.

First we recall the definition of both Jordan algebras and superalgebras, some of their
properties and illustrate them by basic examples. We introduce (bi)-representations (or
(bi)modules) of Jordan algebras following [16]. Then we also define the notion of a special
representation for Jordan algebra which seems to be rather popular among both mathematicians
and physicists. Since the backbone of our method lies in the study of gradings, we do not
require other facts about Jordan algebras. However, further information about them may be
found in [15, 10] and, in detail, in [14].

In section 3, we bring up some results from [18, 19] about gradings of Jordan algebras.
First, we show that groups of automorphisms of Jordan algebra can be used to exploit the
properties of their elements of finite order. They allow us to find many non-equivalent gradings
of the algebras and their representations. Second, we formulate some results for gradings in
the case of simple Jordan algebra of bilinear form.

In section 4, the graded contractions of Jordan algebras (be it finite or infinite dimensional)
are introduced together with the graded contractions of Jordan superalgebras.

In section 5, we will illustrate our method by applying it to an arbitrary Jordan algebra or
superalgebra with Z2-, Z3- and Z2 × Z2-gradings.

In section 6, the general method of contractions of representations of Jordan algebras
is given. The representation theory of recently classified Jordan superalgebras is rather
incomplete at present. Therefore such representations are not considered here.

In section 7, one finds other useful examples of contractions of simultaneously graded
Jordan algebras and their representations.

Finally, in section 8, we demonstrate methods of comparison for the contraction of the
tensor product of two special Jordan modules with the tensor product of their contractions.

2. Jordan algebras and their representations

We restrict our considerations to algebras over the complex number field C. Recall that
a C-vector space J together with a composition J × J → J, (x, y) → x · y, is called a
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Jordan algebra, if all x, y, z ∈ J and all α ∈ C satisfy

x · y = y · x (commutativity)

x · (y + z) = x · y + x · z (αx) · y = α(xy) (1)

(x2 · y)x = x2(y · x) where x2 = x · x (Jordan identity).

The Jordan identity can be rewritten in terms of the associator (x, y, z),

(x, y, z) := (x · y) · z − x · (y · z)

as (x, y, x2) = 0. Furthermore, replacing x by x + λz, λ ∈ C and comparing the coefficients
of λ, we get the so-called polarization formula:

2(x, y, z · x) + (z, y, x2) = 0 for all x, y, z ∈ J.

Replacing x by x + λw in the last formula gives us the multilinear identity

(x, y, z · w) + (w, y, z · x) + (z, y, x · w) = 0 for all x, y, z,w ∈ J. (2)

Subsequently, the generalized Jordan identity (2) is recalled whenever we need to check
whether an algebra is Jordan.

Let A be an associative algebra. In analogy with the commutator [x, y] we may introduce
a symmetric (Jordan) multiplication

x · y = 1
2 (xy + yx) x, y ∈ A.

The algebra obtained after introducing the multiplication x ·y on the vector space A is denoted
by A(+). Then A(+) is a Jordan algebra and every subspace in A closed with respect to the
operation x ·y = 1

2 (xy + yx), forms a subalgebra of A(+) and is consequently a Jordan algebra.
Such an algebra is called a special Jordan algebra.

Let V be a vector space of dimension greater than 1 over C, with a symmetric
non-degenerate bilinear form f (x, y). Let us consider the direct sum of vector spaces
J (V, f ) = C · 1 ⊕ V . We define multiplication in the following way:

(α + x) ∗ (β + y) = αβ + f (x, y) · 1 + (αy + βx) for all α, β ∈ C x, y ∈ V.

Then (J (V, f ), ∗) is a simple special Jordan algebra.
Let G be an Abelian finite group and suppose J is a Jordan algebra graded by G. That

means we have the grading decomposition

J =
⊕
i∈G

Ji

of J into the direct sum of grading subspaces Ji , such that for every choice of x ∈ Ji and
y ∈ Jj we have

x · y = z

where z belongs to the grading subspace Ji+j . As a shorthand we rewrite this relation in terms
of the multiplication of the subspaces

Ji · Jj ⊆ Ji+j i, j, i + j ∈ G. (3)

Here we are using the additive notation for the multiplication in G.
Any Z2-graded algebra J = J0 ⊕ J1 is called a superalgebra. A superalgebra J is said to

be commutative if

x · y = (−1)αβy · x for x ∈ Jα y ∈ Jβ. (4)

As was defined in [17], a Jordan superalgbera is a commutative superalgebra J with an
operation · which satisfies the following axiom:

(−1)αγ (x, y, z · w) + (−1)βα(w, y, z · x) + (−1)γβ(z, y, x · w) = 0 (5)

where x ∈ Jα, z ∈ Jβ,w ∈ Jγ , y ∈ J . We will call the last equation a super-Jordan identity.
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The basic question of representation theory is about the problem of embedding a Jordan
algebra into an associative algebra A. We define such embeddings to be a homomorphism
of J into Jordan algebra A(+) obtained by replacing ordinary multiplication in an associative
algebra by Jordan multiplication. Of particular interest are the embeddings in matrix algebras,
or what amounts to the same thing, in algebra of linear transformations End(V ), where V is a
vector space. More precisely, if J is a Jordan algebra we call a vector space V with bilinear
compositions J × V → V , where (x,m) → xm and V × J → V , where (m, x) → mx a
Jordan bimodule if the split algebra

J ⊕ V = (J ⊕ V, �) (x,m) � (y, n) = x · y + xn + my

for all x, y, z ∈ J and m, n ∈ V , is again a Jordan algebra. In terms of elements, we get
from (1) and (2)

mx = xm

(x · y,m, z) + (y · z,m, x) + (z · x,m, y) = 0 (6)

(x · z, y,m) + (m · x, y, z) + (m · z, y, x) = 0.

Consequently, a birepresentation is defined by two embeddings Lx : J → End(V ), sending
m → xm and Rx : J → End(V ), sending m → mx.

It is clear that since mx = xm, a Jordan bimodule can also be considered as a Jordan
right or left module. In the following the term Jordan module will be used for the left Jordan
module.

In particular, any vector space V together with a bilinear map J × V → V , such that

(x · y)m = x(ym) + y(xm) for any x, y ∈ J m ∈ V (7)

defines a Jordan module for J . A module of this type will be called special. For reference
see [8, 10].

Suppose that V and W are two special modules for a Jordan algebra J and let U = V ⊗W .
Then it is clear that we can define compositions U × J → U and J × U → U by setting

(m1 ⊗ m2)x = m1 ⊗ xm2 x(m1 ⊗ m2) = xm1 ⊗ m2

m1 ∈ V,m2 ∈ W and x ∈ J . Finally, we consider the new linear map { , } : U × J → U ,

{x, (m1 ⊗ m2)} = xm1 ⊗ m2 + m1 ⊗ xm2 (8)

which defines a Jordan module in U, see [16]. Let us stress here that the new module structure
we got on U has a structure of the Jordan (bi)module (not special Jordan module).

3. Gradings of simple Jordan algebras

In this section we want to provide a sufficiently large selection of gradings, so that subsequent
consideration of graded contractions is not deprived of explicit examples. In no way do we
attempt here to exhaust all the possible gradings.

Various gradings of a Jordan algebra are obtained by means of decomposition of Jordan
algebra into eigenspaces of one or several commuting automorphisms of the algebra. Two
gradings are equivalent if they can be transformed into each other by means of an automorphism
of the algebra. Examples of non-equivalent automorphisms providing equivalent gradings of
the algebra are abundant.

In general, non-equivalent gradings of finite-dimensional Jordan algebras have apparently
not been classified. A major step towards that goal, of interest on its own, would be a description
of all fine gradings (i.e. gradings which cannot be further refined) of simple Jordan algebras.
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It is quite likely that interesting objects related to such gradings would be their stabilizers,
particularly the subgroup of the stabilizer which permutes the subspaces of the decomposition.
See [21, 22] for curious examples of this kind from the Lie theory.

Conjugacy classes of elements of finite order of compact simply connected Lie groups
are known [20], and their description in any representation is given in [18]. Therefore they
can be directly used for the grading of Jordan subalgebras of Mn(C)(+).

Let us consider the Jordan algebra Mn(C)(+) of square matrices n × n. As the grading
automorphisms, we consider elements of finite order, gN = 1, in SU(n). The grading is
accomplished once we know the matrices X in

gXg−1 = λX (9)

for all eigenvalues λ. Thus it suffices to know each g only in the defining representation of
SU(n), that is as a unitary matrix n × n. From each conjugacy class of such automorphisms,
it is convenient to choose its unique element represented by a diagonal matrix.

Let us now describe the diagonal matrices representing each conjugacy class. An
SU(n)-conjugacy class of elements of finite order is completely characterized by n integers
[s0, s1, . . . , sn−1] such that

{s0, s1, . . . , sn−1} ∈ Z
�0 and gcd{s0, s1, . . . , sn−1} = 1.

Then the eigenvalues λ in (9) are the Mth roots of unity, where M = ∑n−1
i=0 si . It is useful to

visualize si as attached to the nodes of the extended Dynkin diagram of type An−1.
Finally following section 9, remark 4 of [18], let us write an explicit expression for the

diagonal matrices g in three cases:

n = 2: g =
(

exp
(
π i s1

s0+s1

)
0

0 exp
(
π i −s1

s0+s1

)
0

)
(10)

n = 3: g =




exp
(

2π i
3

2s1+s2
s0+s1+s2

)
0 0

0 exp
(

2π i
3

−s1+s2
s0+s1+s2

)
0

0 0 exp
(

2π i
3

−s1−2s2
s0+s1+s2

)

 (11)

n � 2: g =




exp
(

2π i
nM

U1
) · · · 0 · · · 0

...
...

...

0 · · · exp
(

2π i
nM

Uk

) · · · 0
...

...
...

0 · · · 0 · · · exp
(

2π i
nM

Un−1
)




1 � k � n M =
n−1∑
j=0

sj Uk = −
k−1∑
q=0

qsq +
n∑

p=k

(n − p)sp.

(12)

Note that the adjoint action (9) of g on the algebra is of order M, but the element g is of
order nM/c, where c = gcd{n, s1, . . . , sn−1}.

As an example of special cases of the diagonal matrices above, one can verify that the
elements of the centre of SU(n), which are all multiples of the identity matrix, have M = 1
and that there are precisely n of them all distinct. Indeed, their conjugacy classes are given by
[s0, s1, . . . , sn−1] = [1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1].

To illustrate, let us consider a simple special Jordan algebra

J = M3(C)(+) = {X | X ∈ C
3×3} =


a d g

h b e

f j c


 (13)
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graded by the element g = diag{θ, 0, θ2}, where θ is a root of unity. Then the adjoint action
of g on X ∈ M3(C) gives

gXg−1 =

 a θd θ−1g

θ−1h b θ−2e

θf θ2j c


 .

Suppose that θ2 = 1, then we immediately have Z2-grading on J

J = J0 ⊕ J1 =

a 0 0

0 b e

0 j c


 ⊕


0 d g

h 0 0
f 0 0


 . (14)

By applying simultaneously the adjoint action by the element h = diag{1, γ, γ 2} we
obtain Z2 × Z2-grading on J

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

=

a 0 0

0 b 0
0 0 c


 ⊕


0 0 0

0 0 e

0 j 0


 ⊕


0 0 g

0 0 0
f 0 0


 ⊕


0 d 0

h 0 0
0 0 0


 .

(15)

Let us remark that both of the gradings that we have obtained, give also the gradings for Jordan
algebras of symmetric matrices M = MT .

Suppose that θ3 = 1 (in particular, θ = θ−2). Then we get a Z3-grading for J

J = J0 ⊕ J1 ⊕ J2 =

a 0 0

0 b 0
0 0 c


 ⊕


0 d 0

0 0 e

f 0 0


 ⊕


0 0 g

h 0 0
0 j 0


 . (16)

Let us now bring up some results about gradings of simple Jordan algebras of bilinear form
J (V, f ). Due to [19], any grading J (V, f ) = ⊕

i∈G Ji by a group G over a field (char k �= 2)

can be described as follows. There exists a graded basis B of V , which is a disjoint union of
B = B1 ∪ B ′

1 ∪ F and a bijection B 
 b ↔ b′ ∈ B ′ such that deg b = (deg b′)−1 = 1 for any
b ∈ B and (deg f )2 = 1 for any f ∈ F . The sets B, and B ′ are dual to each other, the duality
is established by the same bijection. F is orthonormal and orthogonal to both B,B ′.

As an example let us consider a three-dimensional vector space V and a symmetric bilinear
form f1 on V such that in some basis 〈v1, v2, v3〉 we have f1(v1, v2) = f1(v3, v3) = 1 and for
any other pair (i, j) f1(vi, vj ) = 0. Then we have a Z3-grading of

J = J0 ⊕ J1 ⊕ J2 = 〈1, v3〉 ⊕ 〈v1〉 ⊕ 〈v2〉. (17)

4. Graded contractions of Jordan algebras and superalgebras

In this section we will describe the method which allows us to find the contractions which
preserve a chosen fixed grading of a Jordan algebra or superalgebra. There is no restriction
as to the dimension of the algebra, it may be finite or infinite. No features are required other
than the presence of the chosen grading. We continually speak about Jordan algebras only
occasionally underlining the fact that superalgebras with the same type of grading are being
considered as well. Let G be an Abelian group and J is a Jordan algebra graded by G.

Let us now define the G-graded contractions. Suppose a G-graded Jordan algebra J is
given. A G-graded contraction J ε of J :

J → J ε =
⊕
i∈G

Ji
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is the Jordan algebra J ε with the grading decomposition isomorphic to that of J and with the
contracted multiplications:

Ji ·ε Jj = εij Ji · Jj ⊆ εij Ji+j (18)

given by the contraction parameters εij ∈ C. Here by Ji · Jj we mean a linear space generated
by the products of every element of Ji with every element of Jj . On the element level we have
x ·ε y = εij z, where x ∈ Ji, y ∈ Jj , z ∈ Ji+j and x · y = z.

The special case of contractions arises when the multiplication relations (18) are modified
by renormalization of the basis of the subspaces by arbitrary non-zero constants,

Ji → aiJi i ∈ G ai ∈ C ai �= 0.

Then in terms of the new basis we will have

Ji · Jj ⊆ aiaj

ai+j

Ji+j i, j ∈ G.

Obviously such a ε = (εij ) = ( aiaj

ai+j

)
determines a contraction. We will call two contractions

ε1 and ε2 equivalent if one can be obtained from the other by renormalization of the basis of
the grading subspaces.

We say that the contraction is trivial if either J ε is isomorphic to J , in cases where εij = 1
or J ε is a Jordan algebra with trivial multiplication, i.e. every εij = 0. We then write ε = (0).
It is easy to check that both these cases satisfy (18). Obviously in both cases J ε is a Jordan
algebra.

In general we shall not be interested in the details of the structure of J , but we will need
to specify whether Ji · Jj is identically zero or not. As in the case of Lie algebras, see [1], we
introduce the symmetric matrix κ = (κij ):

κij =
{

0 if Ji · Jj = 0
1 if Ji · Jj �= 0.

Consequently we can write

Ji · Jj ⊆ κijJi+j

and speak of a Jordan algebra J with G-structure κ . The contraction is then determined by
the matrices κ and ε. In general, the problem of determining the non-trivial contractions ε has
to be solved for each G-graded structure κ . Note that we have chosen to consider the most
general case of κ = (1), the generic case where no Ji · Jj vanishes identically in (3).

To provide J ε with the structure of a Jordan algebra the matrix ε of the contraction
parameters (contraction matrix or just contraction for short) must violate neither the Jordan
identity (2) nor commutativity (1).

In the case of generic contraction, J ε is again a Jordan algebra if (1) and (2) are satisfied:

εij Ji · Jj = εjiJj · Ji

εij εklεk+l,j+i (Ji · Jj ) · (Jk · Jl) − εklεj,k+lεi,j+k+lJi · (Jj · (Jk · Jl))

= εkiεlj εl+j,k+i (Jk · Ji) · (Jl · Jj ) − εkiεk+i,j εk+i+j,lJl · (Jj · (Jk · Ji))

= εilεkj εi+l,k+j (Ji · Jj ) · (Jk · Jl) − εilεi+l,j εi+l+j,kJk · (Jj · (Jl · Ji)) (19)

as a shorthand we wrote these expressions in the form of a graded summand of J .
The equalities can hold simultaneously for any choice of elements of the corresponding

subspaces only if one has

εij = εji εij εklεk+l,j+i = εklεj,k+lεi,j+k+l = εkiεlj εl+j,k+i (20)

for all k, i, j, l ∈ G.
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Let us make a final remark about non-generic cases. Suppose we have the G-grading of
Jordan which is non-generic. For all i, j such that Ji · Jj = 0 contraction parameter εij is not
well defined, so in order to obtain a system of equations corresponding to this G-structure κ

one needs to exclude from (19) all terms with εij .
Any contraction is given by a map ε : G × G → C, with (i, j) → εi,j subject to

equation (20). The set of such maps is closed under pointwise multiplication. Let us recall
some facts from [2] about contractions of a Lie algebra over C. Suppose that L is a G-graded
Lie algebra over C, then any contraction of Lie algebra L is given by ε : G × G → C such
that for any i, j, k ∈ G

εij εi+j,k = εj,kεi,j+k. (21)

Moreover it was proved that contractions form a semigroup of 2-weak cohomology classes
H 2(G, C) on G with coefficients in the field C. One may check that any solution of (21) also
satisfies (20). It follows immediately that any map ε : G × G → C which gives a contraction
of G-graded Lie algebra will also define a contraction for G-graded Jordan algebra or that any
element of H 2(G, C) gives a contraction of G-graded Jordan algebra.

One observes that, instead of (2) and (1), the analogous super-Jordan identities (5) and
super-commutativity (4), would result in the same equation. Non-trivial solutions of (20)
determine the contractions in the generic case.

5. Examples of contractions of Jordan algebras and superalgebras

In this section we consider contractions of simple Jordan algebras and for the simplest cases
of G : Z2, Z3, Z2 × Z2. We would like to remark here that algebras which we get after
contractions of simple Jordan algebras could be interesting not only as illustrations of the
method of graded contractions but also as a source of Jordan non-simple algebras.

5.1. Contraction in the case G = Z2

We consider any Jordan algebra J of finite or infinite dimension which is graded by the cyclic
group Z2 of two elements. Thus we have

J = J0 ⊕ J1 0 �= Ji · Jj ⊆ Ji+j j, i, i + j (mod 2).

The most general contraction J → J ε of J that preserves the Z2-grading is described in
terms of the matrix ε = (εij ) ∈ C

2×2 of contraction parameters

Ji ·ε Jj := εij Ji · Jj ⊆ εij Ji+j i, j = 0, 1. (22)

Here the subscript ε denotes the contracted multiplication. We will introduce the following
convention: whenever ε00 �= 0 we renormalize the basis of the grading subspace J0 such that
ε00 = 1.

The Jordan algebra J and its contraction J ε are isomorphic as linear spaces, only the
multiplication relations in J ε are modified by (22). Equations (20) for J ε being Jordan in the
Z2 case give

ε01 = ε10 ε10
(
ε2

00 − ε10εi0
) = 0

ε2
11ε00 = ε2

11ε10 ε11
(
ε2

00 − ε10εi0
) = 0

(23)

where i = 0, 1. They are solved trivially either by

ε =
(

1 1
1 1

)
or by ε =

(
0 0
0 0

)
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the cases of non-contraction or trivial contraction. The non-trivial contractions are given by
the remaining solutions. There are three non-equivalent non-trivial cases:

ε1 =
(

1 1
1 0

)
ε2 =

(
1 0
0 0

)
and ε3 =

(
0 0
0 1

)
.

Comparing these results with the case of Z2-graded contractions of Lie algebra [1] one may
remark that we get the same non-equivalent contraction as in the Lie case. We illustrate this
result by calculating Z2-contractions for concrete Jordan algebras.

Example 5.1. Let J = Symm(3, C) be a Jordan algebra of symmetric matrices 3 × 3 over C.
The Z2-grading (14) of M3(C)(+) induces Z2-grading of J = J0 ⊕ J1, where

J0 =

a 0 c

0 b 0
c 0 d


 J1 =


0 g 0

g 0 f

0 f 0




with a, b, c, d, f, g ∈ C.

Contracting the algebra Symm(3, C) by ε1, ε2, ε3 we obtain the following algebras:

• J ε1 = (
a

c

c

d

) ⊕ Ce⊕V , where e2 = e and V = 〈v0, v1〉 is a two-dimensional module over
semisimple part Symm(2, C) ⊕ Ce such that E11v1 = ev1 = 1

2v1, E22v0 = ev0 = 1
2v0

and (E12 + E21)vi = 1
2vi+1, i(mod 2). By Eij we denote a matrix in which the only

non-zero entry is 1 on the ith row and the jth column.
• J ε2 = (

a

c

c

d

) ⊕ Ce ⊕ V , where e2 = e and V is a two-dimensional module annihilated by
the semi-simple part Symm(2, C) ⊕ Ce.

• J ε3 = A(+) ⊕ V , where A(+) = 〈x, y〉/〈x, y〉3 is a three generated nilpotent associative
commutative algebra and V is a one-dimensional bimodule annihilated by A(+).

Example 5.2. Let M3(O) be the algebra of all 3 × 3 matrices with elements in octonions
O with standard involution x → x̄. Consider the 27-dimensional simple Jordan algebra
J = Herm(3, O) over C. Any element of J may be written as

X =

α a b̄

ā β c

b c̄ γ




where α, β, γ ∈ C and a, b, c ∈ O. The grading M3(O)(+) induces the Z2-grading of
Herm(3, O),

J0 =

α 0 b̄

0 β 0
b 0 γ


 J1 =


0 a 0

ā 0 c

0 c̄ 0


.

Under contraction we get:

• J ε1 = (
α

b

b̄

γ

) ⊕ Ce ⊕ V , where e2 = e and V = Ov1 ⊕ Ov2 is a 16-dimensional

module over a semisimple part with E11v1 = ev1 = 1
2v1, E22v0 = ev0 = 1

2v0 and
(bE21 + b̄E12)vi = bv̄i+1, i(mod 2).

• J ε2 = (
α

b

b̄

γ

) ⊕ Ce ⊕ V , where e2 = e and V is a 16-dimensional module annihilated by
the semisimple part Herm(2, O) ⊕ Ce (which is a subalgebra in J ).

• J ε3 = J ′ ⊕ V , where J ′ = O[x, y]/〈x2 − 1, y2 − 1, x3, y3〉 is a commutative nilpotent
26-dimensional algebra and V is a one-dimensional bimodule annihilated by J ′.

In particular, one notes that all contracted Jordan algebras are special.



12462 I Kashuba and J Patera

Example 5.3. Let Jt = J0 ⊕ J1 = 〈1, a〉 ⊕ 〈ξ, η〉 be a simple Jordan superalgebra such that
a · ξ = ξ, a · η = η, a2 = 2a, ξ 2 = η2 = 0 and ξ · η = 1 + ta, where t ∈ C, t �= − 1

2 . Then
we get the following contractions of Jt :

• J
ε1
t � C ⊕ C ⊕ 〈v1, v2〉, is a Jordan superalgebra with J0 = Ce1 ⊕ Ce2 and eivj = 0,

v2
j = 0 for all i, j ∈ {0, 1}.

• J
ε2
t � J ′

0 ⊕ J1, where J ′
0 = 〈ξ · η, v〉 such that ξv = ηv = 0.

• J
ε3
t � J0 ⊕ 〈ξ, η〉, where 〈ξ, η〉 is a Jordan algebra with a trivial multiplication.

5.2. Contraction in the case G = Z3

Any Z3 Jordan algebra may be decomposed into

J = J0 ⊕ J1 ⊕ J2 0 �= Ji · Jj ⊆ Ji+j j, i, i + j (mod 3).

Any generic contraction is described in terms of matrix ε = (εij ) ∈ C
3×3. In order for

the algebra J ε to remain Jordan we deduce from equation (20) equations for the case of
Z3-grading:

εij = εji ε3
i0 = ε2

i0ε00 = εi0ε
2
00

εl1(ε00εi0 − εj0εk0) = 0 ε11ε12ε00 = ε11ε12εi0 = ε2
11ε22

ε22ε12ε00 = ε22ε12εi0 = ε2
22ε11 ε3

21 = ε2
21εi0

(24)

where i, j, k, l = 1, 2. The solutions of these equations give 13 non-trivial non-equivalent
contractions:

ε1 =

1 0 0

0 0 0
0 0 0


 ε2 =


1 1 0

1 0 0
0 0 0


 ε3 =


1 0 1

0 0 0
1 0 0




ε4 =

0 0 0

0 1 0
0 0 0


 ε5 =


1 0 0

0 1 0
0 0 0


 ε6 =


0 0 0

0 0 1
0 1 0




ε7 =

0 0 0

0 1 1
0 1 0


 ε8 =


0 0 0

0 0 0
0 0 1


 ε9 =


1 0 0

0 0 0
0 0 1




ε10 =

0 0 0

0 0 1
0 1 1


 ε11 =


1 1 1

1 0 0
1 0 0


 ε12 =


1 1 1

1 1 0
1 0 0




ε13 =

1 1 1

1 0 0
1 0 1


 .

Let us make two remarks here. First, if we check the results from [1] we get the same
picture for Z3-contractions as for the case of Jordan algebras as for Z3-contraction for Lie
algebras. Second, one observes that contractions therein derived are symmetric with respect
to J1 and J2. Therefore we will consider only one of each pair of cases above which differ by
interchanging J1 ↔ J2.

We calculate some contractions of Z3-graded Jordan algebra M3(C)(+).
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Example 5.4. J = M3(C)(+). In section 3 (16) we get a Z3-grading for J = J0 ⊕ J1 ⊕ J2.
For this grading the contracted algebras will be the following:

• J ε1 = C⊕C⊕C⊕V , where V is a six-dimensional bimodule annihilated by semisimple
part.

• J ε2 � J ε3 = Ce1 ⊕ Ce2 ⊕ Ce3 ⊕ (V12 ⊕ V13 ⊕ V23) ⊕ V , where Vij is a one-dimensional
module, such that eivij = ejvij = 1

2vij , vij ∈ Vij , i = 1, 2, j = 2, 3 and V is three-
dimensional bimodule annihilated by semisimple part.

• J ε4 � J ε8 = A(+) ⊕ V , where A(+) = 〈x, y, z〉/〈x2, y2, z2, xyz〉 is a three
generated nilpotent associative commutative algebra and V is three-dimensional bimodule
annihilated by A(+).

• J ε5 � J ε9 = A(+) ⊕ C ⊕ C ⊕ C, where A(+) = 〈x, y, z〉/〈x2, y2, z2, xyz〉 is a nilpotent
associative commutative algebra with three generators.

• J ε6 = A(+) ⊕ A(+) ⊕ A(+), where A(+) = 〈x, y〉/〈x2, y2〉 and V is a three-dimensional
bimodule annihilated by A(+).

• J ε7 � J ε10 = C〈x, y, z〉, non-associative Grassman algebra.
• J ε11 = Ce1 ⊕ Ce2 ⊕ Ce3 ⊕ (V12 ⊕ V13 ⊕ V23)

2, where Vij and ei are as in J ε2 and V .

Example 5.5. J = J (V, f1) (example from section 3). We demonstrated there that J admits
the following Z3-grading J = 〈1, v3〉 ⊕ 〈v1〉 ⊕ 〈v2〉. This grading is a non-generic grading(
J 2

1 = J 2
2 = 0

)
. In the case of non-generic gradings some of the terms in (19) would not be

present. Therefore the Z3-graded contractions of Jordan algebras with non-generic grading
structures are determined by a subset of equations (24). The solutions of (24) will also be the
solutions for the subsystem defined by the non-generic grading. We write some contractions
for J

• J ε1 � J ε5 � J ε9 � C ⊕ C ⊕ V , where V is a two-dimensional bimodule annihilated by
semi-simple part.

• J ε4 � J ε8 = (J, 0), an algebra with zero multiplication.
• J ε6 � J ε7 � J ε10 � S ⊕ V , where S = 〈x, y〉/〈x2, y2〉 is an associative nilpotent algebra

and V is a one-dimensional module annihilated by S.
• J ε11 � J ε12 � J ε13 � Ce1 ⊕Ce2 ⊕〈v1, v2〉, where e1, e2 are idempotents and ejvi = 1

2vi ,
for all i, j = 1, 2.

5.3. Contraction in the case G = Z2 × Z2

The graded group in this section is the tensor product of two cyclic groups of order 2. We
consider any Jordan algebra or superalgebra which admits a Z2 × Z2 grading. We then may
decompose J into

J = J00 ⊕ J01 ⊕ J10 ⊕ J11 such that Jij · Jkl ⊂ Ji+k,j+l

where the subscripts have two components, each read modulo 2. Again we restrict ourselves
to considering the generic case. Then matrix ε can be written as

ε =




ε00,00 ε00,01 ε00,10 ε00,11

ε01,00 ε01,01 ε01,10 ε01,11

ε10,00 ε10,01 ε10,10 ε10,11

ε11,00 ε11,01 ε11,10 ε11,11


 .

In this case we will not specify the equations of (20) for Z2 × Z2. The reason why we do
not write the equations is that, first, Z2Z2 is rich enough to provide a large system of equations
and, second, there are 41 non-equivalent contractions, including two trivial ones and they are
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exactly the same as non-trivial contractions for the case of Lie algebra Z2 × Z2-contractions.
All of them are given in two tables in [1], therefore we refrain from writing them here. Rather
than trying to solve (20) for Z2 × Z2 directly, one may first observe that this system is solved
by tensor products of Z2-solutions (for the generic case). As an example, starting from three
non-trivial Z2-solutions ε1, ε2, ε3 we got

ε1 ⊗ ε2 =




1 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ε1 ⊗ ε3 =




0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 0


 ε2 ⊗ ε3 =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




(25)

Example 5.6. J = Symm(3, C). From section 3 we have Z2 × Z2-grading

J =

a 0 0

0 b 0
0 0 c


 ⊕


0 d 0

d 0 0
0 0 0


 ⊕


0 0 0

0 0 f

0 f 0


 ⊕


0 0 g

0 0 0
g 0 0




For the contractions calculated above we will have:

• J ε1⊗ε2 � Ce1 ⊕Ce2 ⊕Ce3 ⊕〈v1〉⊕V , where ei are idempotents, V is a two-dimensional
bimodule annihilated by semi-simple part, e1v1 = e2v1 = 1

2v1.
• J ε1⊗ε3 � 〈x, y〉/〈x2, y3〉 ⊕ V2, where 〈x, y〉 is an associative commutative algebra and V

is a two-dimensional bimodule annihilated by 〈x, y〉/〈x2, y3〉.
• J ε2⊗ε3 � 〈x, y〉/〈x3〉 ⊕ V , where V is a four-dimensional bi-module annihilated by

〈x, y〉/〈x3〉.

6. Contractions of representations of Jordan algebras

In this section we simultaneously define contractions for bimodules as well as for special
modules of Jordan algebra.

6.1. Contractions of Jordan modules

Suppose that J is a G-graded Jordan algebra. We set G-Mod(J ) to be a category of G-graded
bimodules of J , i.e. J -bimodule V such that

• V is graded by G
• Ji · Vj ⊆ Vi+j i, j ∈ G.

Let ε be a contraction matrix for J , what means a map satisfying (20). Now we want V to be
a J ε-bimodule. Let us consider a set of all maps φ : G × G → C, such that

εijφkmφi+j,m+k = εijφi+j,mφk,i+j+m = εjkφimφj+k,m+i

εikεi+k,jφi+j+k,m = εikφjmφi+k,j+m = φimφj,m+iφk,m+i+j (26)

= εjkφimφj+k,m+i = φkmφj,m+kφi,m+k+j

for all i, j, k,m ∈ G.
Consequently, given φ satisfying (26) and V ∈ G-Mod(J ) we define V φ to be the

J ε-modules with

• vector space structure equal to V ;
• action of J ε defined by

x ·φ v = φi,mx · v x ∈ (J ε)i, v ∈ Vm

v ·φ x = φm,iv · x x ∈ (J ε)i, v ∈ Vm.

Both equations (26) provide that a new action J ε on V satisfies (6). Thus V φ is a J ε-bimodule.
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6.2. Contraction of Jordan special modules

Let G-SMod(J ) be a category of special G-graded modules of a Jordan algebra J . We consider
the set of all maps φ : G × G → C such that

εijφi+j,m = φj,i+mφim = φjmφi,j+m (27)

for all i, j, k,m ∈ G.
Again, given φ satisfying (27) and a module W ∈ G-SMod(J ). we define on vector space

W a structure of special J ε-module Wφ by action

w ·φ x = φi,mw · x x ∈ (J ε)i, w ∈ Wm.

Equation (27) provides Wφ becomes a special Jordan J ε-module. Moreover, we remark
that solutions of the equations (27) for Jordan spatial modules coincide with the solutions of
the equations for contractions of Lie modules for Lie algebras [2]. Therefore, if we have a
contraction matrix of a G-graded Lie algebra (which will automatically be a contraction matrix
for a G-graded Jordan algebra), then the allowed contraction matrices for special modules for
the Jordan algebra case coincide with the contractions for the Lie-module case. In particular,
from [2] tables 1 and 2 we get the whole picture for the case Z2-, Z3-gradings respectively.

7. Examples of contractions of G-graded representations of contracted Jordan algebras

In this section, we consider the contractions of representations for contracted algebras mostly
from section 5.

7.1. Contractions in the case G = Z2

Suppose V ∈ Z2-Mod(J ) then the action of a Z2-graded J splits V into the direct sum

V = V0 ⊕ V1

where the subspaces Vi, i = 0, 1 are defined by the grading properties:

0 �= JiVm ⊆ Vi+m and 0 �= VmJi ⊆ Vi+m i,m, i + m(mod 2).

As above we assume the generic situation. We may also write V and JV as follows:

V =
(

V0

V1

)
and JV =

(
J0 J1

J1 J0

)
·
(

V0

V1

)
=

(
J0V0 + J1V1

J1V0 + J0V1

)
. (28)

After contracting J by ε and V by φ we have

J ε ·φ V =
(

J0 J1

J1 J0

)ε

·φ
(

V0

V1

)
=

(
φ00J0 φ11J1

φ10J1 φ01J0

)
·
(

V0

V1

)
=

(
φ00J0V0 + φ11J1V1

φ01J0V1 + φ10J1V0

)
.

In particular, for the adjoint action of J ε on itself, we have φ = ε. Since we want V φ to
be a Jordan bimodule for J ε, φ has to satisfy (26) for the Z2-case:

φ3
0i = φ2

0iε00 = φ0iε
2
00 ε11φ01ε10 = ε11φ10φ0i = φ2

10φ11

ε11φ11(φ00 − φ01) = 0 φ10(γ0iφ0j − ε01εk0) = 0 φ11(γ0iφ0j − ε01εk0) = 0
(29)

for i, j, k = 0, 1 and γ ∈ {φ, ε}
Similarly, if we want V φ ∈ Z2-SMod(J ) then φ satisfies (27) for the Z2-case.

ε00φ0i = φ2
0i φ10φ0i = ε10φ10

φ11φ0i = φ11ε10 ε11φ0i = φ11φ10 i = 0, 1.
(30)
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Table 1. Non-trivial Z2-graded contractions of representations in the form (28).

ε No J ·ϕ V(
1 1
1 0

)
I.1

(
J0 0
J1 J0

)(
V0

V1

)
=

(
J0V0

J1V0 + J0V1

)
ε = ϕ

I.2
(

J0 J1

0 J0

)(
V0

V1

)
=

(
J0V0 + J1V1

J0V1

)

I.3
(

J0 0
0 J0

)(
V0

V1

)
=

(
J0V0

J0V1

)

I.4
(

J0 0
0 0

)(
V0

V1

)
=

(
J0V0

0

)

I.5
(

0 0
0 J0

)(
V0

V1

)
=

(
0

J0V1

)
(

0 0
0 1

)
II.1

(
0 J1

0 0

)(
V0

V1

)
=

(
J1V1

0

)
ε = ϕ

II.2
(

0 0
J1 0

)(
V0

V1

)
=

(
0

J1V0

)
(

1 0
0 0

)
III.1

(
J0 0
0 0

)(
V0

V1

)
=

(
J0V0

0

)
ε = ϕ

III.2
(

J0 0
0 J0

)(
V0

V1

)
=

(
J0V0

J0V1

)

III.3
(

0 0
0 J0

)(
V0

V1

)
=

(
0

J0V1

)

III.4
(

0 J1

0 0

)(
V0

V1

)
=

(
J1V1

0

)

III.5
(

0 0
J1 0

)(
V0

V1

)
= (J1V0)

Solutions of equations (29) and (30) give sets of all Z2-contraction matrices for Jordan
modules and Jordan special modules respectively. It is clear that φ strictly depends on ε. It
turns out that for any of the three non-trivial contractions ε of Jordan algebras, solutions of
(26) and of (27) coincide, moreover they also coincide with the solutions for the analogous
equations for the Z2-graded representations of Lie algebra, see [1]. Table 1 gives a complete
list of solutions in the form (28).

Example 7.1. Consider an example of the simple Jordan algebra J = Symm(2, C), the Jordan
algebra of 2 × 2 complex symmetric matrices, and its special Jordan module V = M2(C)(+),
the space of 2×2 complex matrices. The standard basis of the algebra is given by the matrices
E11, E22, h := E12 + E21, with E11, E22 being orthogonal idempotents and

E11 · h = E22 · h = 1
2h h2 = E11 + E22.

Consider the following Z2-grading of J :

J0 = CE11 + CE22 J1 = Ch

where C stands for an arbitrary complex coefficient. Then one can verify that

J0 · J0 = J0 J0 · J1 = J1 J1 · J1 = Ch ⊂ J0.

Consequently the grading is generic. The representation space V may also be graded

V0 = CF11 + CF22V1 = CF21 + CF12

where Fij denote a standard basis of V = M2(C).
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In this very simple example it is equally easy to write all relations in matrix form,

J0V0 =
(

a 0
0 c

) (
k1 0
0 k2

)
=

(
ak1 0
0 ck2

)
J0V1 =

(
a 0
0 c

) (
0 n2

n1 0

)
=

(
0 an2

cn1 0

)

J1V0 =
(

0 b

b 0

) (
k1 0
0 k2

)
=

(
0 bk2

bk1 0

)
J1V1 =

(
0 b

b 0

)(
0 n2

n1 0

)
=

(
bn1 0
0 bn2

)
for all a, b, c, k1, k2, n1, n2.

We consider the contraction of J by ε1. The entries I.1–I.5 of table 1 are the contractions
of the representations in this case. Thus, for I.1 we get

J ·φ V =
(

J0 0
J1 J0

) (
V0

V1

)
=




a 0 0 0
0 c 0 0
0 b a 0
b 0 0 c







k1 0
0 k2

0 n2

n1 0


 =




ak1 0
0 ck2

0 bk2 + an2

bk1 + cn1 0


 .

Without loss of generality one may rewrite it as

J ·φ V =
(

ak1 bk2 + an2

bk1 + an1 ck2

)
.

Similarly for I.2 of the table one finds

J ·φ V =
(

J0 J1

0 J0

)
=

(
ak1 + bn1 an2

cn1 ck2 + bn2

)
.

Example 7.2. Let J be a Jordan algebra. Consider the contraction of J given by ε1 = ( 0
0

0
1

)
.

In this case (29) becomes

φ00 = φ01 = φ10φ11 = 0. (31)

One may easily check that for the case of a special Jordan module the system (30) becomes
(31). There are two possibilities for φ in this particular case:

φ1 =
(

0 0
a 0

)
and φ2 =

(
0 0
0 b

)
.

In the form of (28) we write the contracted linear transformations as(
0 aJ1

0 0

) (
V0

V1

)
=

(
aJ1V1

0

) (
0 0

bJ1 0

) (
V0

V1

)
=

(
0

bJ1V0

)
. (32)

One can verify directly that (32) defines, indeed, representations of contracted Jordan algebra
J ε.

7.2. Contractions for the case G = Z3

Suppose V ∈ Z3-Mod(J ) then the action of a Z3-graded J splits V into the direct sum

V = V0 ⊕ V1 ⊕ V2

where the subspaces Vi, i = 0, 1, 2 are defined by the grading properties:

0 �= JiVm ⊆ Vi+m and 0 �= VmJi ⊆ Vi+m i,m, i + m(mod 3).

We may write it in the form of (28)

J ε ·φ V =

φ00J0V0 + φ21J2V1 + φ12J1V2

φ10J1V0 + φ01J0V1 + φ22J2V2

φ20J2V0 + φ11J1V1 + φ02J0V2


 .
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If we want V φ to be a Jordan bimodule for J ε then we need φ satisfying (26) for Z3:

ε2
00φ00 = ε00φ

2
00 = φ3

00

ε2
00φ0i = ε00φ

2
0i = φ3

0i

φi0γ00φ00 = φi0γ0iγ0i = φ0iγ00γ0i

εiiφī0γ0i = εiiφī0φ00 = γ0iφiiφi0 = φiiφi0φ00 = εiiεī0φī0

φiiγ0iγ0i = φiiγ0iε00 = φiiφ0ī ε00 = φiiφ0ī γ0i = φiiφ
2
0ī

φ12φ00γ00 = φ12φ0ī γ00 = ε0iφ12γ00 = φ12ε
2
0i = φ12φ

2
0ī

φij ε11ε22 = φij ε12εi0 = φijφ20φ12 = φijφ10φ21 = φijφ11φ22

= φij ε12φ0,i+j = φij ε12φ0j = εiiφīiφī,i+j̄

εiiφīiγ0i = φīiεiiφ00 = φīiεiiεī0 = φiīφiiφ0k k = 0, 1

εiiφiīεī0 = εiiφi0φīī = φi0φiiφiī = εiiεiīφ0k k = 0, 1, 2

φiiφ0kφi0 = φiīφi0εi0 = εiiφīīγ0k = φiīφi0φ00 k = 1, 2

ε12φk0φ0i = εiiφī0φīī = φ0iφīiφi0 = φi0φiiφīī

= φi0φī0φiī = εiiεīīφi0 = εiiε0iφi0 k = 0, i

ε12φ
2
0k = ε12ε0kφ0m = ε0lφ10φ21 = ε0lφ20φ12 = γ0lφ11φ22 = φ12φ20φ02

= φ12φ20φ00 = φ21φ10φ01 = φ21φ10φ00 k,m = 0, 1, 2 l = 1, 2.

(33)

For all equations above i = 1, 2, j = 1, 2, ā = −a and γ ∈ {φ, ε}.
If we want V φ to be a special Jordan module then from (27) we deduce the following

system of equations for φ:

ε00φ0m = φ2
0m ε01φ1m = φ1mφ0,m+1 = φ1mφ0m

ε02φ2m = φ2mφ0,m+2 = φ2mφ0m ε11φ2m = φ1mφ1,m+1

ε22φ1m = φ2mφ2,m+2 ε12φ0m = φ2mφ1,m+2 = φ1mφ2,m+1

(34)

where m = 0, 1, 2 and subscripts are taken modulo 3.
As we have already mentioned, system (34) coincides with the system corresponding to

φ for the case of representations of graded contractions for Lie algebras. Consequently, since
we obtained the same set of non-equivalent contractions, we obtain the same solutions as in
the case of Lie algebras. There is no need to rewrite the corresponding table, see table 2 in
[2]. Further, the solutions of (34) are also among the solutions of (33). However, (33) admits
other solutions. We will write them in table 2. There Jordan algebra contractions are given by
ε. The contractions of representations are given by the corresponding φ. Out of three matrices
φ, which differ by cyclic permutation of columns, only one is shown.

Example 7.3. Consider the contraction J ε given by

ε =

1 1 0

1 0 0
0 0 0


.

Let us consider two Jordan bimodule contractions

φ1 =

1 1 1

1 0 0
0 0 0


 and φ2 =


0 0 0

0 0 0
1 1 0


.
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Table 2. Non-trivial Z3-graded contractions of Jordan bimodules which are not contractions for
special Jordan modules.

ε No ϕ J ·ϕ V
1 0 0

0 0 0
0 0 0


 I.1


0 0 0

1 1 0
1 0 0





 0 0 0

J1 0 0
J2 J1 0





V0

V1

V2


 =


 0

J1V0

J2V0 + J1V1




I.2


0 0 0

1 0 0
1 0 1





 0 0 0

J1 0 J2

J2 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

J2V0




I.3


0 0 0

1 1 0
0 0 0





 0 0 0

J1 0 0
0 J1 0





V0

V1

V2


 =


 0

J1V0

J1V1




I.4


0 0 0

0 0 0
1 1 0





 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 =


J2V1

0
J2V0





1 1 0

1 0 0
0 0 0


 II.1


0 0 0

0 0 0
1 1 0





 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 =


J2V0

0
J2V0





1 0 1

0 0 0
1 0 0


 III.1


0 0 0

1 1 0
0 0 0





 0 0 0

J1 0 0
0 J1 0





V0

V1

V2


 =


 0

J1V0

J1V1





0 0 0

0 1 0
0 0 0


 IV.1


0 0 0

1 1 0
0 0 0





 0 0 0

J1 0 0
0 J1 0





V0

V1

V2


 =


 0

J1V0

J1V1




IV.2


0 0 0

1 0 0
0 0 1





 0 0 0

J1 0 J2

0 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

0




IV.3


 0 0 0

−1 0 0
1 0 0





 0 0 0

J1 0 0
J2 0 0





V0

V1

V2


 =


 0

J1V0

J2V0




IV.4


0 0 0

0 0 0
1 0 0





 0 0 0

0 0 0
J2 0 0





V0

V1

V2


 =


 0

0
J2V0





1 0 0

0 1 0
0 0 0


 V.1


1 0 0

0 0 0
0 0 1





J0 0 0

0 0 J2

0 0 0





V0

V1

V2


 =


J0V0

J2V2

0




V.2


0 0 0

1 1 0
0 0 0





 0 0 0

J1 0 0
0 J1 0





V0

V1

V2


 =


 0

J1V0

J1V1




V.3


0 0 0

1 0 0
1 0 0





 0 0 0

J1 0 0
J2 0 0





V0

V1

V2


 =


 0

J1V0

J2V0




V.4


0 0 0

1 0 0
0 0 1





 0 0 0

J1 0 J2

0 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

0




V.5


0 0 0

0 0 0
1 0 0





 0 0 0

0 0 0
J2 0 0





V0

V1

V2


 =


 0

0
J2V0





0 0 0

0 0 1
0 1 0


 VI.1


0 0 0

1 1 0
1 0 0





 0 0 0

J1 0 0
J2 J1 0





V0

V1

V2


 =


 0

J1V0

J2V0 + J1V1




VI.2


0 0 0

1 0 0
1 0 1





 0 0 0

J1 0 J2

J2 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

J2V0




VI.3


0 0 0

1 1 0
0 0 0





 0 0 0

J1 0 0
0 J1 0





V0

V1

V2


 =


 0

J1V0

J1V1




VI.4


0 0 0

0 0 0
1 1 0





 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 =


J2V1

0
J2V0



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Table 2. (Continued.)

ε No ϕ J ·ϕ V
0 0 0

0 1 1
0 1 0


 VII.1


0 0 0

1 1 0
0 0 0





 0 0 0

J1 0 0
0 J1 0





V0

V1

V2


 =


 0

J1V0

J1V1




VII.2


0 0 0

1 0 0
0 0 1





 0 0 0

J1 0 J2

0 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

0




VII.3


0 0 0

1 0 0
1 0 0





 0 0 0

J1 0 0
J2 0 0





V0

V1

V2


 =


 0

J1V0

J2V0




VII.4


0 0 0

0 0 0
1 0 0





 0 0 0

0 0 0
J2 0 0





V0

V1

V2


 =


 0

0
J2V0





0 0 0

0 0 0
0 0 1


 VIII.1


0 0 0

1 0 0
1 0 0





 0 0 0

J1 0 0
J2 0 0





V0

V1

V2


 =


 0

J1V0

J2V0




VIII.2


0 0 0

1 0 0
0 0 1





 0 0 0

J1 0 J2

0 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

0




VIII.3


0 0 0

1 0 0
0 0 0





 0 0 0

J1 0 0
0 0 0





V0

V1

V2


 =


 0

J1V0

0




VIII.4


0 0 0

0 0 0
1 1 0





 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 =


J2V1

0
J2V0





1 0 0

0 0 0
0 0 1


 IX.1


1 0 0

0 1 0
0 0 0





J0 0 0

0 0 0
0 J1 0





V0

V1

V2


 =


J0V0

0
J1V1




IX.2


0 0 0

1 0 0
0 0 1





 0 0 0

J1 0 J2

0 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

0




IX.3


0 0 0

1 0 0
1 0 0





 0 0 0

J1 0 0
J2 0 0





V0

V1

V2


 =


 0

J1V0

J2V0




IX.4


0 0 0

1 0 0
0 0 0





 0 0 0

J1 0 0
0 0 0





V0

V1

V2


 =


 0

J1V0

0




IX.5


0 0 0

0 0 0
1 1 0





 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 =


J2V1

0
J2V0





0 0 0

0 0 1
0 1 1


 X.1


0 0 0

1 0 0
0 0 0





 0 0 0

J1 0 0
0 0 0





V0

V1

V2


 =


 0

J1V0

0




X.2


0 0 0

1 0 0
0 0 1





 0 0 0

J1 0 J2

0 0 0





V0

V1

V2


 =


 0

J1V0 + J2V2

0




X.3


0 0 0

1 0 0
1 0 0





 0 0 0

J1 0 0
J2 0 0





V0

V1

V2


 =


 0

J1V0

J2V0




X.4


0 0 0

0 0 0
1 1 0





 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 =


J2V1

0
J2V0




Here φ1 is an admissible contraction for both the Jordan and special Jordan modules,
while φ2 is a contraction matrix only in the case of a special module. In the form (28) we
write the contracted linear transformations as

J0 0 0
J1 J0 0
0 0 J0





V0

V1

V2


 =


 J0V0

J1V0 + J0V1

J0V2


 (35)
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 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 =


J2V1

0
J2V0


. (36)

One can verify directly that (35) is, indeed, a special representation of the contracted
Jordan algebra J . We will check it for J0 ·ε J1 ⊆ J1

J1V =

 0 0 0

J1 0 0
0 0 0





V0

V1

V2


 =


 0

J1V0

0




J1V ⊇ (J0 ·ε J1)
φV = 1

2J
φ

0

(
J

φ

1 V
)

+ 1
2J

φ

1

(
J

φ

0 V
)

= 1

2


J0 0 0

0 J0 0
0 0 J0





 0 0 0

J1 0 0
0 0 0





V0

V1

V2




+
1

2


 0 0 0

J1 0 0
0 0 0





J0 0 0

0 J0 0
0 0 J0





V0

V1

V2




= 1

2





 0 0 0

J0J1 0 0
0 0 0


 +

1

2


 0 0 0

J1J0 0 0
0 0 0








V0

V1

V2


 =


 0

J0J1V0

0


.

With (36) it is not the case, since

0 = (J2 ·ε J2)
φV = J

φ

2

(
J

φ

2 V
)

= 1

2


 0 J2 0

0 0 0
J2 0 0





 0 J2 0

0 0 0
J2 0 0





V0

V1

V2


 +

1

2


0 0 0

0 0 0
0 J2J2 0





V0

V1

V2


 �= 0.

Straightforward, but long calculations show that (36) will give a Jordan bimodule for J ε.

8. Contractions of tensor product of representations

Let ε define a contraction for G-graded Jordan algebra and let V,W be G-graded Jordan
special modules of J . Finally, let φ be a contraction of the G-graded Jordan special bimodule
compatible with ε. Consider V ⊗ W graded by G in the usual way:

(V ⊗ W)p =
⊕

i+j=p

Vi ⊗ Wj

where i, j, p ∈ G. Hence, due to (8), V ⊗ W is a G-graded Jordan module of J with the
action defined by

{J, (V ⊗ W)} = JV ⊗ W + V ⊗ JW (37)

and we may contract V ⊗ W by φ. Here, as in the case of Lie algebras in [2], the equality
(37) is destroyed,

{J, (V ⊗ W)}φ �= (JV )φ ⊗ W + V ⊗ (JV )φ.

In order to restore (37) we introduce the tensor product contraction map τ :

(Vi ⊗ Wj)
τ = τijVi ⊗ Wj (38)
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in analogy with (18). In terms of grading subspaces (37) and (38) can be written as follows:

{Jk, (Vi ⊗ Wj)} = JkVi ⊗ Wj + Vi ⊗ JkWj

τijφk,i+j {Jk, (Vi ⊗ Wj)} = φkiτk+i,j (JkVi)
φ ⊗ Wj + φkj τi,k+jVi ⊗ (JkWj )

φ.

Both equations must hold simultaneously for all choices of elements of Jk , Vi and Wj . That is
possible only in the case when for each fixed φ the following system of equations is satisfied:

τijφk,i+j = φkiτk+i,j = φkj τi,k+j . (39)

In order to find all tensor product contractions one needs to solve (39) for all fixed φ.
Since we have obtained again the same equations for τ as for the tensor product contractions
for the case of Lie algebras, a list of some solutions of (39) for specific gradings could be
found in [2].

One also may note that in the case of fixed contraction matrix ε equation (39) is always
solved by τ = φ = ε.
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contraction J. Math. Phys. 36 4519–48
[13] Gerstenhaber M 1964 On the deformations of rings and algebras Ann. Math. 79 59–103
[14] Jacobson N 1968 Structure and Representations of Jordan Algebras (AMS Colloq. Publ. 39) (Providence, RI:

American Mathematical Society)
[15] Kuzmin E and Shestakov I 1995 Non-associative structures, algebra, VI Encyclopaedia Math. Sci. vol 57

(Berlin: Springer) pp 197–280
[16] Jacobson N 1954 Structure of alternative and Jordan bimodules Osaca Math. J. 6 1–70
[17] Kac V 1977 Classification of simple Z-graded superalgebras and simple Jordan superalgebras Commun. Algebra

13 1375–400



Graded contractions of Jordan algebras 12473

[18] Moody B V and Patera J 1984 Characters of elements of finite order in Lie groups Siam. J. Algebr. Discrete
Methods 5 359–83

[19] Bahturin Yu and Shestakov I 2001 Gradings of simple Jordan algebras and their relation to the gradings of
simple associative algebras Commun. Algebra 29 4095–102

[20] Kac V 1969 Automorphisms of finite order of semisimple Lie algebras Funct. Anal. Appl. 3 253–4
[21] Moody R V and Patera J 1984 General charge conjugation operators in simple Lie groups J. Math. Phys. 25

2838–47
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